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LETTER TO THE EDITOR 

Fractal structures derivable from the generalisations of the 
Pascal triangle 

A Lakhtakiat, R MessiertS, V K Varadant and V V Varadani- 
t Department of Engineering Science and Mechanics, The Pennsylvania State University, 
University Park, PA 16802, USA 
$ Materials Research Laboratory, The Pennsylvania State University, University Park, PA 
16802, USA 

Received 12 May 1987 

Abstract. Generalisations, of order K 2 2 ,  of the Pascal triangle are used to construct 
generalised Pascal-Sierpinski gaskets of orders ( K ,  L 2 2). It is shown that all such gaskets 
are self-affine fractals, but when K = 2 and L is prime then the gasket is rigorously 
self-similar and possesses a similarity dimension. The evolutionary morphology of the 
gaskets of orders ( K ,  L prime) bears a resemblance to the growth of pyrolitic graphite 
films and other material structures. 

In an earlier report (Holter et a1 1986) we described a new family of planar fractals 
derivable from the famous Pascal triangle and named the members of this family as 
the Pascal-Sierpinski gaskets (PSG). It was shown that the PSG of prime order are 
rigorously self-similar, for which fractal (similarity) dimensions can easily be deduced, 
while those of non-prime order are merely self-affine: various fractal measures can be 
obtained for them experimentally or numerically (Lakhtakia et a1 1986a, 1987). 
Moreover, the well known Sierpinski gasket (Mandlebrot 1983) turns out to be a PSG 
as well. 

Further generalisation of the PSG is afforded by the extension (Philippou et a1 1985) 
of the original Pascal triangle (Uspenskii 1974). Given an integer K 3 2, let ( K ) P n , m  
be defined as a rectangular array on the integral indices n and m by the relations 

m > n ( K - l ) , n z O  ( l a )  ( K I P  
n,m = 0 

in which the recursive process of calculation begins with the seed 

( I d )  
If attention is focused solely on the range 0s m n ( K  - l),  Vn 3 0, then the array of 
numbers thus obtained constitutes a generalised Pascal triangle of order K. It should 
be noted that K = 2 for the ordinary Pascal triangle. 

The generalised Pascal triangles give rise to many fractal structures in the same 
manner that the PSG were generated from the ordinary Pascal triangle. Given another 
integer La 2, let the array (K’L)Qn,m be constructed from ( K ) P , , m  via the relation 

( K I P  
0.0 = 1. 

(K’L)Qn,m = mod{(K)Pn,m, L}. (2) 
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Then the generalised Pascal-Sierpinski gasket (GPSG) of order ( K ,  L )  is defined as the 
array ( K 9 L ) G  n.m 9 where 

G n , m  = 0 if ( “ S L ) Q ,  n m  = O  (3a)  

G n , m  = 1 if ( K ’ L ) ~ n , m  z 0. (3b) 

( K . L )  

( K . L )  

It should be noted that the GPSG of order (K, L )  is not the same as that of the order 
( L ,  K ) .  A couple of GPSG are shown in figure 1. 

Figure 1.  The generalised Pascal-Sierpinski gaskets of orders (3,5) and (4, 7 ) .  

From visual inspection of some one hundred GPSG, it became clear that, in general, 
they are not rigorously self-similar; the exceptions are the GPSG of order (2, L )  provided 
L is prime, and in which case the similarity dimension turns out to be 

d(2.L) = log[L(L+ 1)/2l/log[Ll L=2,3 ,5 ,7 ,11 ,13 , .  . .  . (4) 

Thus, the mass-radius dimension has to be computed as per the procedure described 
by us elsewhere in detail (Holter et af 1986). Shown in figure 2 are several plots of 
log[M(n)] against log[n], where the mass function is defined as the sum 

M ( n ) =  (K,L’G n.m . 
i t ( 0 . n )  mc{O,i i  K - 1 ) )  

The broken lines marked n in this figure are the plots which are obtained provided 
the zeros of (K,L)Gn.m are all replaced by 1, and hence correspond to the Euclidean 
dimension of two. I t  is to be noted from these graphs that the mass-radius dimensions 
of the GPSG exceed unity but fall short of the Euclidean dimension. Generally speaking, 
for a fixed K,  the GPSG of higher L possesses the higher mass-radius dimension. There 
appears to be a minimum limit for this dimension, namely log3/log2 which is the 
similarity dimension of the Sierpinski gasket. Coupled with the fact that evidence of 
self-similarity was obtained only for the PSG of prime order, it can be stated that the 
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Figure 2. Plots of the mass function against the row index n for several GPSG. The broken 
curves marked n would be obtained if the zeros of the GPSG were all replaced by 1 ,  and 
their topological dimensions equal their Euclidean dimensions of two. 

vast majority of the GPSG are merely self-affine (Mandelbrot 1985, Lakhtakia er a1 
1986b). That, however, does not detract from their fractal nature: indeed, they may 
be among the few well ordered and deterministic examples of fractals which are not 
self-similar. 

If the PSG of prime order are self-similar, the natural question to ask is why the 
GPSG of orders ( K  2 3, L prime) are not? (Further discussion in this letter is confined 

came up with an interesting observation. The row n = Lp, p a  1, contains a total of 
[ 1 + Lp(  K - l ) ]  lattice sites on which there are ( K  - 1) groups ofzeros (nulls) ensconced. 
Each group contains ( L p  - 1) nulls, and is bounded on either side by a l(seed). Thus, 
in the row n = Lp, there are always K seeds and ( K  - l ) (Lp - 1) nulls. Since this 
grouping keeps on recurring every LPth row, it would appear that the proper fractal 
scale is logarithmic with base L for the pertinent GPSG regardless of the specific value 
of K .  

The LPth row should be regarded, in the manner of Huyghens' principle, as a 
reseeding row for the GPSG. Each seed on this row evolves out into a triangular 
gasketlet made up of L p ( L -  1) rows. Down its LPth row, each gasketlet would also 
contain [ 1 + ( Lp - 1)(K - l)]  sites, but 

(6) 
the equality holding only if K = 2. Consequently, the additional gasketlets will interfere 

to prime L.) In order to answer this question, we explored the function (K,')G n,m and 

[l  + ( L p  - 1)(K - 1 ) ] 3  [ l  + ( L p  - l)]  
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with each other and reduce the number of sites to be occupied with a value of 1, unless 
K = 2. The mass function M ( L p )  does not scale with L, therefore, if K > 2. Hence, 
this interference is responsible for the self-affinity of the GPSG of orders (K  > 2, L 
prime); conversely, the absence of this interference makes the GPSG of orders (2, L 
prime) self-similar. 

From looking at the evolution of the GPSG, several conclusions on these structures 
can be drawn. These are enumerated as follows. 

( a )  Self-similarity is destroyed by interference even in the presence of a well 
established logarithmic scale. 

(b)  As the size ( p )  increases, voids of different sizes do not all increase in number 
at the same rate. 

(c)  Reseeding takes place quickly when p is small. 
(d )  Competition starts in the vicinity of the LPth row. 
The two concepts of reseeding and interference (i.e. competition) between structures 

are central to developing an understanding of thin-film growth under low adatom 
mobility conditions (Messier 1986). For such conditions, a thin film has a void network 
with an internal boundary structure which is apparently fractal (Messier and Yehoda 
1985). Thus, similarities between the cross-sectional morphology of vapour-deposited 
films and the present GPSG may have the same basis, despite the fact that in thin-film 
growth reseeding occurs randomly and continuously. Depending upon the film deposi- 
tion conditions, the nucleation density, the competition for resulting cone-growth 
survival and the renucleation frequency are all interrelated and can account for the 
wide range in film properties and morphology: from the lower density and rough top 
surfaces (cauliflower-like) to dense smooth morphologies. Quantitative deterministic 
fractal models, such as the present example, may hold the key to quantitative prepar- 
ation-property relations for thin films. 

This research was supported in part by the US Air Force Office of Scientific Research 
under grant no AFOSR-84-0149. 
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